Higher tier Paper 2 – Calculator

Question	Working	Answer	Mark	AO	Notes
1	7 + 28 + 22 = 57	11, 44 and 38	Р	3.1b	P1 for a correct process to develop algebraic expressions for each number and set up an inequality, e.g. $x + 4x + 4x - 6 > 57$ or for a correct trial with a prime number
			Р	3.1b	P1 for a correct process to solve the inequality, e.g. $x > (57 + 6) \div 9$ (= 7) or for a correct trial with the prime number as 7 resulting in a sum of 57
			А	1.3b	A1 cao
2	3x - 3c = 2x + 5	Shown	Р	2.2	P1 for a process to start a chain of reasoning
	x = 3c + 5		Р	2.2	P1 for a process to isolate terms in <i>x</i>
			С	2.4a	C1 convincing explanation from $x = 3c + 5$
3 (a)		720	Р	3.1c	P1 attempt to find the maximum biscuits for one of the ingredients, e.g. 5000 ÷ 150 (= 33.3) or 2500 ÷ 75 (= 33.3) or 3000 ÷ 100 (= 30) or 320 ÷ 10 (= 32)
			Р	3.3	P1 for identifying butter as the limiting factor or 30×24 (= 720) seen
			А	1.3b	A1 for 720 cao

|49

Question	Working	Answer	Mark	AO	Notes
3 (b)		116.25%	М	1.3b	M1 for a correct method of finding either 70% (= 504) or 30% (= 216) of 720
			Р	3.1b	P1 for a process to find the cost of "216" at 55p for $4 (= \pounds 29.70)$
			Р	3.1b	P1 for a process to find revenue, e.g. "504" × £0.25 + "£29.70" (= £155.70)
			Р	3.1b	P1 for a process to find profit, e.g. "£155.70" – £45 – £27 (= £83.70)
			М	1.3b	M1 for $\frac{83.70}{72} \times 100$
			Α	1.3b	A1 for 116.25%
4		Demonstration	М	1.1	M1 for using a radius and a half of the radius in the substitution into $A = \pi r^2$ (or choosing 10 and 5 for the respective radii oe)
			Р	2.4a	P1 for a process to find the area of a quadrant, e.g. $\frac{1}{4} \times \pi x^2$ and $4 \times \frac{1}{4} \times \pi \left(\frac{x}{2}\right)^2$ (x may be numerical)
			С	2.4a	C1 for concluding the argument by showing that both areas equate to $\frac{\pi x^2}{4}$ (x may be numerical in which case both areas must be shown to be the same multiple of π)

Qu	estion	Working	Answer	Mark	AO	Notes
5	(a)(i)		Correct drawing	М	1.3a	M1 for a correct bearing drawn or for a correct
						distance drawn or quoted
				A	1.3a	A1 for a correct position of <i>B</i>
	(a)(ii)		230°	В	1.1	B1 for 230° cao
5	(b)		Correct statement	Р	2.3a	P1 for drawing a correct right-angle triangle
			with evidence		1.01	showing line East from A and perpendicular from B
				M	1.36	(can be implied by correct trigonometric ratio)
				Р	2.2	M1 for $\cos 50^\circ = \frac{d}{36}$ oe
				С	2.1a	P1 for $36 \times \cos 50^{\circ}$ oe
						C1 for deduction 22.14 km plug a statement serving
						that the ship is always more than 23 km from the
						lighthouse
6	(a)		No + written	Р	22	P1 for a start to the process that leads to a decision
Ŭ	(u)		evidence	1	2.2	93 - 2
						e.g. $n = \frac{33}{3}$ oe
				С	2.4a	C1 for a convincing argument for 'No' (e.g. because
						<i>n</i> is not a whole number)
6	(b)	$3n + 2 + \overline{3n + 2 + 3}$	6n + 7	М	1. 3 a	M1 for $3n + 2 + 3n + 2 + 3$ oe
				A	1.3a	A1 cao
6	(c)	3n+2+3n+2+3=91	44	Р	3.1a	P1 for a process that translates the problem into a
	~ /	n = 14				suitable form that would lead to a solution,
		$3 \times 14 + 2$				e.g. $6n + 7' = 91$ Or $t + t + 3 = 91$ or $(91 - 3) \div 2$
				Α	1.3a	A1 cao

Qu	estion	Working	Answer	Mark	AO	Notes
7	(i)	72	60	Р	3.1c	P1 for a correct process to find the number of
		$\frac{100}{100}$ × 80				students with a score of at least 72% e.g. $\frac{72}{100} \times 80$
				Р	3.2	P1 for process to use graph to find number who
	(ii)			A	1.3a	A1 56 - 64
	(11)		Assumption and how it affects answer	С	3.5	C1 for assumption stated and how it affects answer to (i), e.g. the marks are so distributed within the interval such that numbers can be found by reading directly from graph (need both the assumption and how it affects the answer to gain the mark)
8	(a)		Shown	M	1.3a	M1 for $x(x^2 - 1)$ or $(x^2 + x)(x - 1)$ oe
				Α	1.3a	A1 cao
8	(b)		Shown	Р	2.4b	P1 for explanation to show that
						$n^3 - n$ is the product of three consecutive positive
						integers, e.g. $n^{3} - n = (n-1)n(n+1)$
				C	2.4b	C1 for a correct conclusion to the proof,
						e.g. at least one of these is even and one is a
	()		<u></u>			multiple of 3 so the product is a multiple of 6
8	(c)	$2^{\circ_1} - 1$ is prime so not a multiple of 3	Shown	Р	2.4a	P1 for recognising that $2^{\circ 1} - 1, 2^{\circ 1}$ and $2^{\circ 1} + 1$ are
		$2^{\circ 1}$ is not a multiple of 3		C	2.40	three consecutive positive integers
		Hence $2^{61} + 1$ must be a multiple of 3		Ľ	∠.4a	C1 for a convincing argument
9	(a)	Width of surface = $d + d + 3$	A = d(d+3)	Р	3.1b	P1 for correct process to find width of surface
		Area of cross-section =				P1 for correct process to find cross-sectional area,
		$\frac{d}{2}(d+d+3+3)$		Р	3.1b	e.g. $\frac{d}{2}(d+d+3+3)$
				А	1.3b	A1 for $A = d(d + 3)$ or $A = d^2 + 3d$

Question	Working	Answer	Mark	AO	Notes
9 (b)	A = 1.5(1.5 + 3)	6.75 m^2	М	1.3a	M1 for substitution of 1.5 in formula or a complete method starting again
			A	1.3a	A1 for 6.75
9 (c)	$486000 \div 60 = 8100 \\8100 L = 8.1 m^{3}$	1.2 m/s	Р	3.1d	P1 for a correct process to convert rate to per second, e.g. $486\ 000 \div 60\ (=8100)$
	8.1 ÷ 6.75		Р	3.1d	P1 for process to convert to m^3 , e.g." $8100" \div 1000$
			Р	3.1d	P1 for process to convert litres/min to m/s, e.g. "8.1" ÷ ".75"
			Α	1.3b	A1 cao
10		Proof	Р	2.4b	P1 for recognising that angle O is common
			C	2.4b	P1 for angle <i>OTP</i> = angle <i>TSO</i> with 'alternate segment theorem'
			С	2.4b	C1 for completion of proof, e.g. third angles are equal, so triangles are equiangular
11 (a)	Venn diagram	Correct diagram (See diagram at end)	Р	2.3a	P1 to begin to interpret given information, e.g. 3 overlapping labelled ovals with central region correct
			Р	2.3a	P1 to extend interpretation of given information, e.g. 3 overlapping labelled ovals with at least 5 regions correct
			C	2.3b	C1 for correct process to communicate given information, e.g. 3 overlapping labelled ovals with all regions correct, including outside
11 (b)		$\frac{23}{80}$	В	1.3a	B1 ft diagram

Question	Working	Answer	Mark	AO	Notes
11 (c)		19	М	1.3a	M1 for probability with denominator 40
		40	А	1.3a	A1 $\frac{19}{40}$ oe
12 (a)	$10 \times 10 \times 10 \times 10$	10000	М	1.3a	$M1 10 \times 10 \times 10 \times 10$
			А	1.3a	A1 cao
12 (b)	$5 \times 4 \times 5 \times 4$	400	М	1.3a	$M1 5 \times 4 \times 5 \times 4$
			А	1.3a	A1 cao
13	$2x - 4 = x^2 - 4x + 4$	√20	Р	3.1b	P1 for a process to eliminate <i>y</i> , e.g.
	$r^{2} - 6r + 8 = 0$				$2x - 4 = x^2 - 4x + 4$ followed by reduction to
	x - 0x + 8 = 0		D	2 11	3 term quadratic
	(x-4)(x-2) = 0		Р	3.10	P1 for factorisation or formula for a 3 term
	x = 4, x = 2		D	3 1h	quadratic = 0
	When $x = 4$, $y = 4$		A	1 3h	A 1 all 4 values ($r = 4$ v = 4 and $r = 2$ v = 0)
	When $x = 2$, $y = 0$		P	3.1a	P1 for a correct process to find the distance ² or
	4 - 2 = 2				distance between the 2 points.
	4 - 0 = 4				e.g. $('4' - '2')^2 + ('4' - '0')^2$
	$2^2 + 4^2$		A	1.3a	$A1\sqrt{20}$
14 (a)	$(\sum fx =) 24 \times 25 + 42 \times 50 + 64 \times 70 +$	Conclusion +	Р	2.3a	P1 for process to interpret histogram to find
	$44 \times 85 + 54 \times 100 = 16\ 320$	support			frequencies, e.g. $(40 - 10) \times 0.8$
			Р	3.1b	P1 for process to use frequencies and midpoints
	$(\Sigma f=) 24+42+64+44+54=228$		м	1 2h	M1 for $(\Sigma f_{V}) \div (\Sigma f)$
			11/1	1.30	$\begin{bmatrix} 1V11 & 101 & (\angle 1X) + (\angle 1) \end{bmatrix}$
	Mean = 16 320÷228 = 71.6		А	1.3b	A1 for a value $71 - 72$
			С	2.1b	C1 (dependent on P1) for an inference based on

154

Question	Working	Answer	Mark	AO	Notes
					the calculated value of the mean, e.g. the evidence supports the hypothesis as the mean in 2013 is lower
14 (b)		No + reason	C	2.5b	C1 No, because the histogram does not show individual values
15	$\frac{1000 \times 13.915}{8.25^2 \times 83.5} = 2.448$	2.4 g/cm ³	В	1.1	B1 for $83.5 \le h < 84.5$ or $8.25 \le d < 8.35$ (or correct bounds) or $13.905 \le M < 13.915$ (or correct bounds). Accept $h = 84.5$ or $d = 8.35$ or $M =$ 13.915
	$\frac{1000 \times 13.905}{8.35^2 \times 84.5} = 2.360$		Р	3.1c	P1 for correct process to find upper bound of $D (= 2.4(48 \text{ or } 0.0024(48))$ oe
			Р	3.1c	P1 for correct process to find lower bound of $D (= 2.3 (60 \text{ or } 0.0023(6))$ oe
			Р	2.4a	P1 for an explanation or a correct process to find D to an appropriate degree of accuracy
			A	1.3a	A1 2.4 g $/cm^3$

Question 11(a)